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ABSTRACT

This is the third of a series of articles detailing the devel-
opment of near-infrared spectroscopy methods for solid
dosage form analysis. Experiments were conducted at the
Duquesne University Center for Pharmaceutical Technology
to develop a system for continuous calibration monitoring
and formulate an appropriate strategy for calibration transfer.
Indicators of high-flux noise (noise factor level) and wave-
length uncertainty were developed. These measurements,
in combination with Hotelling’s T2 and Q residual, are used
to continuously monitor instrument performance and model
relevance. Four calibration transfer techniques were com-
pared. Three established techniques, finite impulse response
filtering, generalized least squares weighting, and piecewise
direct standardization were evaluated. A fourth technique,
baseline subtraction, was the most effective for calibration
transfer. Using as few as 15 transfer samples, predictive
capability of the analytical method was maintained across
multiple instruments and major instrument maintenance.

KEYWORDS: process analytical technology (PAT), near-
infrared spectroscopy (NIR), tablet analysis, pharmaceut-
ical analysis, calibration transferR

INTRODUCTION

This is the third of a series of articles detailing the develop-
ment of near-infrared (NIR) methods for solid dosage form
analysis. The first article described early feasibility studies
to verify the performance of a new online tablet analyzer
and provided vital data for calibration development.1 The
second detailed the development and validation of quanti-
tative NIR calibrations for tablet active pharmaceutical in-
gredient (API) content and hardness.2 This article examines
the details of implementing and managing NIR calibrations
to ensure the continuity of predictive performance. These

details are summarized in terms of calibration monitoring
and calibration transfer.

Published investigations of process analytical technology
(PAT)3 applications often focus on selection of technology,
and the development and validation of predictive calibra-
tions. While these are essential aspects of a PAT applica-
tion, a suitable infrastructure must be in place to support
the deployment, operation, and maintenance of the PAT
method in a real-time manufacturing environment. The
development of this infrastructure comprises the third phase
of PAT method development.

CALIBRATION MONITORING

For every NIR tablet analysis performed, there are 4
possible outcomes that depend on the state of the tablet
and the state of the measurement system:

1. The tablet is within specification, and the measure-
ment is valid.

2. The tablet is within specification, and the measure-
ment is not valid.

3. The tablet is out of specification, and the measure-
ment is valid.

4. The tablet is out of specification, and the measure-
ment is not valid.

Any given measurement provides information about the
product and the operational capabilities of the measurement
system. The states of the measurement system and product
determine whether the analytical method, the product, or
both require investigation and corrective action. There is
finite probability that an analytical result will be rendered
invalid as a result of sampling errors, instrumental drift or
failure, or product changes. If the prediction failure is the
result of sampling error, corrective action may be as simple
as repeating the tablet analysis. For measurement failures
resulting from instrumental and product variation, more sub-
stantive action is required in the form of calibration transfer
or update; both will be discussed in the following sections.
In any event, it is imperative that a robust protocol be in
place to monitor the state of the system, and, if necessary, to
determine the appropriate corrective action. The purpose of
calibration monitoring is to ensure that conditions (2) and
(4) are detected.
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A significant advantage of spectroscopic PATs (eg, NIR,
Raman, or NIR imaging) is the wealth of ancillary infor-
mation captured with each measurement. The shape of an
NIR spectrum, for example, is determined not only by the
chemical and physical properties of the sample but also by
the condition of the instrument and the nature of the inter-
action between the sample and the instrument. It was dem-
onstrated earlier in this series1,2 that, with the application
of appropriate chemometric techniques, it is often possible
to generate accurate predictions for specific sample quality
attributes, while suppressing the spectral effects of other
concomitant variations. In much the same way, multivariate
data analysis and signal processing techniques can be ap-
plied to monitor the state of the NIR measurement system.
These techniques represent an application of multivariate
statistical process control (MSPC).4,5 The goal of a calibra-
tion monitoring protocol is to determine whether the instru-
ment is functioning properly and whether the calibration
models are appropriate for the current sample.

CALIBRATION TRANSFER

Calibration transfer is generally regarded as a mathematical
procedure whereby a model or data are transformed so they
are compatible with multiple analytical instruments.6 For
example, an NIR calibration model developed using a
laboratory-based “master” spectrometer may require modi-
fication to be transferred for use with an online “slave”
process spectrometer. However, calibration transfer covers
a wide range of operations for the perpetuation and propa-
gation of PAT methods. Furthermore, while they will be
illustrated herein as spectroscopic analysis tools, calibration
transfer techniques are generally applicable to multivariate
data used for predictive modeling. Calibration transfer oper-
ations can be classified as either data transformation or
model update techniques.

Calibration data transformation techniques are used either
to format data for compilation from multiple sources (or
events), or to adjust a set of model parameters to maintain
or extend their applicability. Model adjustments for calibra-
tion transfer include linear “slope and bias” adjustments on
predictions.7 The choice of whether the calibration model
or the calibration data should be modified for calibration
transfer has little bearing on predictive performance.8 The
modification, or standardization, of spectral data are advan-
tageous to model transformation since it facilitates cross-
platform data sharing and archiving. This approach has the
benefit of maintaining a single data (and model) basis. For
these reasons, only transformation techniques pertaining to
the standardization of spectral data are considered in this
work.

A range of data transformations have been developed that
can be used for calibration transfer. These techniques can

be arranged on a continuum according to complexity. The
simplest data transformations are signal processing techni-
ques such as normalization, parametric baseline adjustment
(eg, detrending), bandpass filtering, and derivatization.6 Sig-
nal processing, or preprocessing, techniques are an impor-
tant part of robust9 chemometric model development for
feature enhancement and background suppression. They play
a preventive role in calibration transfer since many instru-
mental and sampling effects appear as low-frequency effects
such as additive and multiplicative baseline shift.1 Many
calibration transfer problems, however, require more com-
plex, empirical data transformation. Empirical data transfor-
mation functions are applied prior to spectral preprocessing
operations within the analytical data flow (Figure 1). Two
types of empirical calibration data transformation will be
discussed: direct orthogonalization and regression-based
transformation.

Similar to signal processing techniques, direct orthogo-
nalization (DO) algorithms may be used as preprocessing
during calibration development.7,10-13 These algorithms,
including DO,13 orthogonal signal correction (OSC),7,10-12

prediction-augmented classical least squares (PACLS),14

generalized least squares (GLS),15 and their respective vari-
ants, work by subtracting or suppressing undesirable spec-
tral variation. For example, to transfer a calibration between
2 NIR analyzers, a linear model of the spectral differences
between the instruments can be created using principal
component analysis (PCA):

X ¼ X ðI−PdP
T
d Þ ð1Þ

where X^ = n × p matrix of spectra, orthogonalized to the
principal axes of the difference spectra. X = n × p matrix
of sample or calibration spectra to be corrected. Pd =
Loading vectors for the PCA model, d, of the difference
spectra. I = p × p identity matrix.

Subsequently, sample spectra are corrected by subtracting
the significant principal components of the difference spec-
tra. While DO techniques have been shown to be effective
for calibration transfer,11 and in some cases can be derived
using artificial reference standards,14 they generally require
recalculation of the calibration model for each application.
Furthermore, if the spectral difference between instruments
is significant and/or covers a large portion of the sample
spectrum, very little analytical signal may remain after or-
thogonalization, which may reduce predictive capability.

Regression-based transfer algorithms use a data set of paired
spectra to estimate a transfer function between the signals
of multiple analyzers. Rather than subtracting or suppress-
ing instrumental differences, regression-based transfer algo-
rithms seek to “warp” spectra to a common basis. Hence,
under ideal conditions, analytical information content is not

^
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compromised by the transfer. In a simple application, linear
regression might be used to adjust for a gain and bias
difference between 2 single-channel sensors. The patented
CLONE16-19 algorithm, which employs quadratic regres-
sion between the paired channels of master and slave spec-
trometers, has been used extensively for calibration transfer
and standardization among grating monochromator NIR
analyzers. Direct standardization (DS)7,20 and piecewise
direct standardization (PDS)7,20-22 estimate a transfer func-
tion to predict the spectral response of each wavelength of
a master instrument using either the entire spectrum, or dis-
crete spectral bands, from a slave instrument, respectively.
These algorithms are capable of compensating for linear
differences in sensitivity, as well as wavelength and band-
pass. PDS has been used for calibration transfer between
different types of spectrometers,7 as well as for correction
of sample temperature effects.21 For even greater flexibility,
nonlinear versions of PDS have been developed using ar-
tificial neural network (ANN) regression.7

For all empirical calibration transfers, great care must be
taken to select the appropriate algorithm and to design the
calibration transfer training data set accordingly. Regression-
based calibration transfer can be as complex as the quan-
titative calibration development process, with increased risk
of over-fit. Unlike signal processing techniques, which are
implemented as an integral part of the calibration develop-

ment process, empirical calibration transfer techniques are
employed in response to deviations in the NIR spectra.

Empirical calibration transfer may remedy the effects of a
planned event, such as instrument maintenance (eg, lamp
change), or calibration transfer to a new instrument. Alterna-
tively, empirical calibration transfer may be required for re-
standardization of the instrument following an unexpected
change in instrument response. In the event that an un-
planned spectral deviation is detected by the calibration
monitoring protocol, and if a root cause analysis determines
that the problem is the result of an instrumental change, a
new calibration transfer function must be calculated by an-
alyzing an instrument standardization sample set. In cases
where no redundant master instrument is available, a “rescue
set” of standardization samples and spectra should be main-
tained. Ideally, artificial reference standards (which are re-
sistant to degradation) would be used for estimation of the
data transformation function. This is rarely an option in prac-
tice, since it is difficult to replicate the instrument-sample
interaction for process analyzers using artificial reference
standards. Many researchers have observed that empirical
NIR calibration transfer requires the use of real samples.16,17

Thus, stability tests should be performed to determine a suit-
able storage time for instrument standardization samples.
Furthermore, a standardization sample replacement proce-
dure should be in place prior to deployment of the PAT.

Figure 1. Data flow diagram for a PAT application of NIR spectroscopy.
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CALIBRATION UPDATE

In the event that an unplanned spectral deviation is detected
by the calibration monitoring protocol and root cause analy-
sis does not find instrumental error (state No. 2, as above),
and if parallel testing finds the product to be within speci-
fications, calibration update is required to restore analytical
performance.19,23 Calibration or model update entails the
recalculation of a predictive model with the inclusion (or
exclusion) of a particular set of samples. Examples of
situations that might prompt calibration update are changes
in API or excipient source, or the effect of routine wear of
the processing equipment, both of which may alter the NIR
process signature.1,3 Under ideal conditions, all possible
within-specification product variations are modeled during
calibration development. Since this is rarely practical,
quantitative NIR calibrations typically model a subset of
potential variations.2 Thus, the need for calibration update
does not imply that the analytical method has failed; rather,
new variance has been encountered that would ideally have
been included in the model in the first place.

Since every scenario that might prompt the update of a PAT
calibration cannot be anticipated, the nature of future cali-
bration updates cannot be rigorously defined. However,
conditions under which calibration update should be per-
formed must be well defined. Standard operating proce-
dures (SOPs) should be in place to guide the development
and validation of an updated calibration. To date, the appli-
cation presented here has not required calibration update.
Therefore, calibration update will not be discussed in the
following experimental sections of this paper.

OBJECTIVES

The objectives of the work reported here were the
following:

1. Develop a system for continuous calibration mon-
itoring.

2. Formulate an appropriate strategy for calibration data
transformation to support instrument maintenance
and interinstrument transfer.

3. Determine the required number, and allowable storage
time, of instrument standardization “rescue” samples.

MATERIALS AND METHODS

NIR Instrumentation

Two Luminar 3070 (Brimrose Corp, Baltimore, MD) double-
beam scanning acousto-optic tunable filter (AOTF) spec-
trometers were used for this work. The first spectrometer, or
“master instrument,” was used during the earlier phases of
method development, reported in the first 2 articles of this
series.1,2 The master instrument will be used online for

continuous monitoring of solid dosage tablets. The second
spectrometer, or “slave instrument,” will be used as an off-
line, or backup, analyzer. Both analyzers used the automatic
tablet positioning system described earlier in this series.1

While the master and slave instruments are identical in
configuration, some differences in spectral response were
observed (Figure 2). For the slave instrument to serve as an
effective backup instrument, it must be capable of sharing a
model with the master instrument (without compromising pre-
dictive capability). Thus, a data transformation was needed
to facilitate interinstrument calibration transfer.

Data Collection

Three sets of tablet samples were used for the calibration
transfer investigations. The first set, or “training set,”
consisted of 254 tablets from multiple production-scale
batches. Chemical and physical reference data were not
available for the first sample set, which was used exclusively
as a calibration transfer training data set. The second and
third sample sets consisted of the VAL2 and VAL3 sample
sets from the second article in this series.2 The VAL2 data
set consisted of production-scale tablets, while VAL3 con-
sisted of laboratory-scale tablets with wide variation in
API content and hardness. The VAL2 and VAL3 samples
were used to test the performance of the calibration transfer
algorithms tested. API content reference data were available
for the VAL2 and VAL3 sample sets and were summarized
earlier in this series.2 Spectra of the tablets from all 3 sets
were scanned using both the master and slave instruments.

A stability study was performed to determine the length of
time tablets could be stored for use as calibration rescue
samples. This fourth, or “stability,” sample set consisted of

Figure 2. Raw calibration transfer training spectra for the master
(red) and slave (blue) AOTF spectrometers. The same samples
were measured using both instruments.

AAPS PharmSciTech 2005; 6 (2) Article 39 (http://www.aapspharmscitech.org).

E287



9 production-scale tablets, which were scanned repeatedly
using both the master and slave analyzers over a period of
40 days. Degradation or change in NIR spectral signature
was detected by application of the continuous calibration
monitoring procedure.

Standard wavelength reference material SRM-1920a was
used for wavelength uncertainty characterization.

The API content and hardness calibrations, and data sets,2

were employed for prediction and calibration monitoring.

All data analyses were performed using Matlab 6.5 (The
Mathworks, Natick, MA), and the PLS Toolbox 3.0
(Eigenvector Research Inc, Manson, WA). All studies were
performed by the Duquesne University Center for Pharma-
ceutical Technology (DCPT).

Calibration Transfer Algorithms

Three established calibration transfer techniques were
tested for their ability to maintain the predictive perform-
ance of a calibration following transfer between master and
slave spectrometers. One signal processing technique, finite
impulse response filtering (FIR),24 and 2 empirical techni-
ques, GLS5 (orthogonalization) and PDS20 (regression),
were investigated. A fourth technique, direct baseline
subtraction,22 was evaluated.

All of the established calibration transfer methods have at
least 1 parameter that must be specified. These methods were
optimized using random cross-validation to specify the asso-
ciated parameter values. During cross-validation, the training
sets were repeatedly separated randomly (pairwise) into train-
ing and test subsets. For each iteration of FIR optimization,
the API content calibration data set and the test subsets were
filtered (via FIR), a temporary partial least-squares (PLS) sub-
calibration was derived, and the test subsets were predicted.
The mean spectrum of the API content calibration set was
used as the FIR reference. The optimal FIR windowwidth and
the choice of additional preprocessing operations (eg, deriv-
atives) were selected as the combination for which the pre-
dictions of the master and slave test subsets were most in
agreement. Agreement between master and slave predictions
was quantified as root mean square error of transfer (RMSET):

RMSET ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
meanððPREDmstr: � PREDslaveÞ2Þ

q
ð2Þ

Once the optimal FIR parameter combination was selected,
a new FIR + PLS calibration was calculated, and the FIR-
transformed VAL2 and VAL3 data sets were predicted.

The GLS optimization was similar to that for FIR as it also
involved recalculation of the calibration model after GLS
weighting. During cross-validation, GLS submodels were

calculated using the difference between the master and slave
training subsets. For GLS, the scaling parameter, a, and
additional preprocessing steps were optimized. Also, a sep-
arate study (not shown) was performed to determine whether
GLS weighting should be performed before or after other
preprocessing operations. For this application, GLS weight-
ing was found to perform best when performed using raw
difference spectra (prior to other preprocessing).

Since PDS is independent of the calibration, only the master
and slave training sets were required for cross-validation.
The calibration transfer algorithms were ranked according to
root mean square error of prediction (RMSEP) after opti-
mization. RMSETwas used during optimization (rather than
RMSEP), since it is expected that in a “rescue” calibration
transfer situation, chemical or physical reference data may
not be available for the transfer sample set. Thus, if it is
necessary to reoptimize the transfer method, predicted val-
ues from a master instrument would be used as reference.
Furthermore, the use of any of these techniques to “improve”
calibration performance is a separate issue from calibra-
tion transfer and should be considered during calibration
development/update. RMSEP was used for final method
selection because the effect of any transfer method on pre-
dictive performance must be considered.

RESULTS AND DISCUSSION

Calibration Monitoring

The goal of a calibration monitoring protocol is to deter-
mine whether the instrument is functioning properly and
whether the calibration models are appropriate for the cur-
rent sample. This determination is performed with every
measurement, in real-time. The calibration monitoring pro-
tocol developed for this work is based on 4 measurements
of the data: high-flux noise, wavelength shift uncertainty,
lack of model fit, and sample-to-model distance.

Historically, the NIR instrument performance evaluation com-
ponent of calibration monitoring has been performed off-line,
or, at best, between sample scans. This common procedure
is impractical for real-time use. Some instrument perform-
ance parameters can be monitored continuously by analy-
zing certain features of the sample spectra. For this work,
tests were developed to measure high-flux noise and wave-
length shift uncertainty using individual sample spectra.

The high-flux noise test is based on the analysis of the highest-
frequency component of each spectrum using interpoint
correlation (IPC). The scanning NIR spectrometers used for
this work sample the wavelength axis at a higher frequency
than the instrument bandpass, therefore high correlation is
expected between absorbance intensity measurements at
adjacent wavelengths. Thus, since high-flux detector noise is
also manifested at a frequency beyond the instrument
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bandpass, the level of IPC will vary significantly with the
level of high-flux noise (Figure 3). IPC will not be sig-
nificantly affected by changes in spectral shape owing to
sample composition. IPC is calculated using the Pearson
correlation function (r) between adjacent data points:

rðΧλ;Χλþ1Þ ¼ nðΣðΧλ Χλþ1Þ − ðΣΧλÞðΣΧλþ1Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðΣX 2

λ Þ − ðΣΧλÞ 2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nðΣΧ2
λþ1Þ − ðΣΧλþ1Þ

q
2;

where X λ indicates odd-numbered spectral data points, and
X λ+1 indicates even-numbered spectral data points.

Using this formula, a noise factor level (NFL) is estimated
as a function of the following:

NFL ¼ ƒ ð1 � r ðX λ; X λ þ1ÞÞ ð4Þ
With this framework in place, a function relating estimated
to actual high-flux noise can be derived by using Monte-
Carlo simulation (Figure 4). The NFL function does not
pass through the origin because the relationship was esti-
mated by adding artificial high-flux noise to NIR spectra,
which already had some level of high-flux noise present.
Furthermore, the presence of features in an NIR spectrum
limits the maximum IPC, which, in turn, prevents the NFL
from reaching zero.

Two methods might be used to specify control limits for the
NFL. One method would be to use Monte Carlo simulation
to determine a critical NFL limit, where calibration perfor-
mance is significantly degraded, as was implied during
validation of the API content calibration.2 The second method
would be to estimate limits from historical calibration de-
velopment data (Figure 5). Since the calibration was shown

to be robust to high flux noise levels far exceeding the his-
torically observed NFL (Figure 5), relatively wide control
limits could be justified. Regardless of the control limits,
any monotonically increasing trend in NFL should be treated
as an indication of pending instrument failure and should
prompt preemptive investigation or maintenance. While the
IPC noise test was effective for this application, other in-
struments (especially those with a wider spectral sampling
interval) may require some alternate form of real-time noise
test. One possibility might be to analyze sequential repetitive
scans of each sample (without repositioning).

NIR absorbance bands may shift as the result of chemical
or physical changes in the sample (or temperature variation)

Figure 3. Example of IPC for typical (blue) and noisy (red) NIR
spectra.

Figure 4. Estimation of an NFL transfer function relating
simulated high-flux spectrometer noise to IPC.

Figure 5. Histogram of historical NFL scores for the API
content calibration spectra.

(3)
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and instrumental error. The robustness testing performed
earlier in this series2 illustrated the deleterious effect of wave-
length inaccuracy on the predictive capability of NIR cali-
brations, regardless of the source of error. A sample-based
wavelength uncertainty test is performed by measuring the
locations of NIR absorbance bands in the sample spectra.
The centerlines of major absorbance bands are located as
zero-crossings in the first or third derivative of each sample
spectrum (Figure 6). Simulations were performed (not
shown) to determine the accuracy of the wavelength shift
test using 7 absorbance bands, centered at 1364, 1383, 1406,
1427, 1739, 1760, and 1932 nm. Test spectra were randomly
offset and stretched along the wavelength axis, and the lo-
cation of absorbance band centers was monitored. In all
cases it was found that the added absorbance band offset
was measured with less than 0.03 nm standard error.

Historical wavelength uncertainty test results (for the ab-
sorbance band centered near 1364 nm) are shown for the
calibration data set in Figure 7. Wavelength shift error is
distributed about a mean standard deviation of 0.22 nm.
The average wavelength shift correlation coefficient for the
7 bands tested was less than 0.6. It was also observed that,
for this instrumentation, absorbance band shift is not well
correlated across the entire spectrum. This finding would
suggest that the observed wavelength shift is either due to
chemical or physical changes in the samples, or that the
AOTF instrumentation exhibits complex, time-varying
wavelength shift error characteristics. The wavelength shift
test was then applied to multiple spectra (from the same in-
strument) of a standard wavelength reference material
(SRM-1920a). These spectra exhibited nonconstant wave-

length shift variation, supporting the observation that band
shift (for this system) is instrumental in nature, as the chemi-
cal and physical characteristics of the standard were stable.

When the wavelength shift test was performed using rotating
grating monochromator-based instruments, much simpler lin-
ear or quadratic wavelength shift error characteristics were
observed, which stem from mechanical limitations.25 While
it is more difficult to quantify, nonconstant wavelength shift
will have a relatively less deleterious effect on predictive
performance because the arithmetic mean spectral variation
will be lower (unpublished data, Cogdill 2004). However, if
linear or quadratic wavelength shift can be accurately quan-
tified, the spectra can be adjusted accordingly. Until more
work can be done to fully characterize the wavelength shift
variation26 of AOTF instruments, the real-time wavelength
accuracy measurement will be used for observation only.

In addition to verification of instrument performance, the
calibration monitoring protocol must be able to determine
whether or not the calibration models are applicable. Two
MSPC tools that are often employed are the lack of model fit,
or Q residual statistic, and the sample-to-model distance given
by Hotelling’s T2 statistic.5 These statistics describe not only
model suitability but can detect instrument-induced variation
in spectral baseline. For each 1 × p sample spectrum, xi, the
Q statistic is calculated as the sum of squared reconstruction
error across all wavelengths:

Qik ¼ ∑ðxi − tikP
T
k Þ2; ð5Þ

where Qik is the sum of squared reconstruction error for ith

sample spectrum using model k, xi is the sample spectrum,

Figure 6. Third-derivative transformation of the API content
calibration spectra. Major zero-crossings (used for wavelength
uncertainty testing) are located near 1364, 1383, 1406, 1427,
1739, 1760, and 1932 nm.

Figure 7. Demonstration of AOTF wavelength uncertainty at
1364 nm, measured using continuous calibration monitoring.
The upper figure shows the third derivative traces for the API
content calibration spectra from 1363 to 1366 nm. The lower
figure shows the frequency of zero-crossing occurrence as a
function of wavelength.
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tik is the latent variable scores for i
th sample spectrum, using

model k, and Pk is the model k loadings, or eigenvectors.

The Hotelling’s T2 statistic is calculated as follows:

T2
ik ¼ tikðλ−1k ÞtTik ;

where T 2
ik is Hotelling’s T2 for the ith sample spectrum using

model k, tik is the latent variable scores for ith sample spec-
trum, using model k, and λ−1k is the diagonal matrix of nor-
malized eigenvalues of the covariance matrix for model k.

The normalized eigenvalue matrix is calculated for model k
as follows:

λk ¼
ðTT

k TkÞ
nk

; ð7Þ

where Tk is the matrix of calibration sample model scores
for model k, and nk is the number of calibration samples
used for the estimation of model k.

As seen from Equations 6 and 7, Hotelling’s T2 is a mea-
surement of statistical distance in score space. Hence, T2 is
not influenced by spectral variation out of the plane of the
model (Figure 8). A large T2 indicates that the sample has
high leverage on the model and may exceed the confidence
limits of the model hyperspace. In these cases, predictions

should be considered invalid. Q, on the other hand, is a mea-
surement of the spectral variation orthogonal to the plane
(Figure 8), which is unexplained by the model. Thus, Q and
T2 are completely independent measurements of spectral
character. A large Q residual indicates that the sample is
poorly reconstructed by the model, which is an indication
that either a new factor may be present in the sample matrix
or an instrumental fault has occurred (eg, sampling error,
component failure).

The Hotelling’s T2 and Q residual statistics for the API
content calibration and VAL2 (production-scale) data sets
are shown in Figure 9. All of the VAL2 Q residuals, and a
portion of the VAL2 T2 scores, exceed the 99% confidence
limits set for the calibration data set. During validation of
the API content calibration,2 it was discovered that a 6.0-
mg bias correction was required for the VAL2 and VAL3
data set predictions. The increase in Q residuals indicates a
change in the spectrum shape, which supports the notion
that the bias was the result of intercontinental transport and
reassembly of the NIR analyzer, as well as normal instru-
mental drift due to aging (since years had transpired between
calibration development and analysis of the VAL2/VAL3 sam-
ple sets).2 Ideally, a rescue set of stored tablets with known
spectra would be recalled to derive a calibration transfer
matrix, but no such transfer set was available; thus, the only
recourse was either calibration update or correction of the
predicted values. Since the observed bias was significant,
and attributable to a known event, a single-term bias correc-
tion was added to the calibration regression model. As more

Figure 8. Example of a 2-component PCAmodel of 3-dimensional
data. The primary and secondary component axes are shown
scaled by the magnitude of their corresponding eigenvalue.
The 2-dimensional ellipse represents the Hotelling's T2 95%
confidence region. The red point illustrates an outlying sample,
with its projection on the model (green point). The green
dashed line (in the plane) is the distance from the sample
projection to the model center (Hotelling's T2). The red dotted
line is the distance from the sample point to the in-plane
projection (Q residual).

Figure 9. Hotelling's T2 and Q residual scores for API content
calibration (black dots) and VAL2 (red squares) spectra. The solid
black lines illustrate T2 and Q upper control limits estimated
using the calibration data. The dashed red lines illustrate upper
and lower control limits estimated from the VAL2 scores. The
control limits represent 99% confidence intervals.
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spectral and reference data become available, calibration
update and revalidation are the preferred course of action.

Calibration monitoring can also be used as a product iden-
tity verification tool. NIR spectra were acquired (using the
same instrumentation) for 2 other drug products produced
at the same tablet facility. When the API content calibra-
tion model was applied to the data, the T2 and Q scores (not
shown) were far higher than was observed for the VAL2
data. The T2 and Q 99% upper confidence limits for the
VAL2 data set were 17.7, and 5.8 × 10−5, respectively. The
mean T2 scores for the 2 other products were 52.4 and 111.3,
and the Q residual scores were 1.4 × 10−4 and 6.4 × 10−4.

The spectral differences of the VAL2 and false-product data
were discernable without need for control limits on the Q
and T2 statistics. Determining control limits on T2 and Q
scores is a complex issue. Control limits (eg, 95% or 99%
confidence interval) could be set by assuming statistical
distributions for the Q and T2 scores (Figure 9). This prac-
tice provides a high probability that a fraction of otherwise
acceptable predictions will be rejected for excessive Q or
T2 scores (eg, 1 tablet per 100 at 99%). This leads to un-
warranted shut-down for investigation of the process or
analytical method. Rather than setting hard statistical
limits a priori, it is suggested that a period of online
observation with parallel testing be used to establish
control limits. Consistent with this strategy, upper and
lower control limits are specified (Figure 9) subsequent
to revalidation for prediction of new samples at elevated
Q residual values (VAL2). While specification of lower
control limits is not a standard practice for these statistics, it
should be noted that changes in the Q and T2 scores (from a
set trend), regardless of the direction, indicate a change in

either the process or the analytical method, and should be
treated as an excursion from validation.

Since the Q and T2 statistics will be unique for every cali-
bration model, they can be used as another means of as-
sessing model independence. By plotting T2 and Q scores
from the API content calibration against those from the
hardness calibration, it can be seen that their control limits
will be different (Figures 10 and 11). The T2 scores for the
2 calibrations are highly correlated (Figure 11). The signifi-
cant correlation between the T2 scores is not unexpected as
the spectra and preprocessing for both models were quite
similar. Moreover, both models explain greater than 90% of
the spectral variance in a common hyperspace. The bias
and scale difference between the T2 scores for the 2 models
is due to a difference in model center and degrees of free-
dom since each calibration model was estimated using dif-
ferent training samples (Equation 6).

The Q residual scores for the 2 calibration models are much
less correlated (Figure 10). Since the API content calibra-
tion includes an additional latent variable (vs the hardness
calibration), a different proportion of spectral variation will
be captured, and each model will emphasize a unique set of
spectral features. This disparity of emphasis is the root
cause for the lack of correlation in Q residual scores, but
highlights an advantage of latent variable projection models
in specificity. By virtue of projection, the variance that af-
fects each model can be controlled.

Calibration Transfer

FIR7,24 is a spectral preprocessing operation where multi-
plicative scatter correction (MSC)27 is applied recursively
as a sliding window operation. As a windowed technique,

Figure 10. Comparisons of Q residual scores for the VAL2
spectra using the API content and hardness calibration models.

Figure 11. Comparisons of Hotelling's T2 scores for the VAL2
spectra using the API content and hardness calibration models.
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FIR is more flexible than MSC and is able to mitigate com-
plex nonlinear additive and multiplicative baseline effects,
whereas MSC adjusts entire spectra with a single set of
global slope and offset coefficients. The flexibility of the
FIR operation is controlled by adjusting the width of the
window, and by changing the shape of the reference spec-
trum. As window width increases, FIR begins to converge to
the MSC solution. As window width decreases, FIR increas-
ingly forces the sample spectra to fit the reference spectrum,
eventually removing all spectral variation. As a preprocess-
ing technique, FIR must be performed prior to calibration.
Since no model is required, the technique presents a poten-
tially elegant solution for both scatter correction and cali-
bration transfer.

GLS weighting was explored as a DO technique for cali-
bration transfer. GLS is quite similar to the DO routine
shown in Equation 1. Rather than subtracting projections of
variance, however, GLS down-weights the spectral features
to be suppressed. Singular-value decomposition (SVD) is
used to create a linear model of the difference spectra. Sam-
ple spectra are then normalized by the weighted inverse of
their projection on the singular vectors. The GLS weighting
is adjusted by scaling the singular values of the projections
with an adjustable parameter, a. As a increases (maximum
value = 1), the GLS weighting is reduced, and only the
greatest singular values have significant influence. As a
decreases (minimum value 9 0), GLS weighting increases,
and increasing emphasis is put on the smaller singular val-
ues. GLS must also be performed prior to calibration. Be-
cause it is an empirical technique, a set of GLS model
coefficients must be maintained. Moreover, for every recal-
culation of the GLS model, the calibration models must be
modified and revalidated.

PDS (described in the Introduction) was applied as an exam-
ple of a regression-based calibration transfer algorithm. PDS
transformation is adjusted by varying window width. With
the window width set to 1, univariate regression is performed
between corresponding master and slave wavelengths. As
the window width is increased, a wider spectral band and
latent variable regression are used to model each wavelength
of the corrected spectrum. Window widths greater than 1 allow
for correction of wavelength shifts and bandpass differences
between the master and slave instruments. Furthermore,
increasing the window width has an implicit smoothing
effect. While regression-based transformation does require
storage of coefficients, these algorithms have the advantage
of being independent of the calibration. Thus, a data trans-
formation matrix can be modified and stored for each instru-
ment (Figure 1) and can be recalculated and revalidated
without adjustment or revalidation of the calibrations.

The calibration transfer training spectra are shown before
and after application of the data transformation algorithms

in Figure 2 and Figure 12. For all 3 algorithms, FIR, GLS,
and PDS, the master and slave training spectra can be su-
perimposed after transformation. FIR and GLS signifi-
cantly altered the appearance of both the master and slave
spectra. As seen in Figure 12, FIR filtering greatly reduced
the amount of variance in the spectra. When the API con-
tent calibration was recalculated with FIR and Savitsky-
Golay first derivative preprocessing, predictive ability was
reduced, suggesting that some pertinent spectral variation
was lost as a result of the filtering operation. When applied
to the calibration transfer test set, the FIR slave predictions
were the least similar to the predictions from the master
instrument data (Tables 1 and 2). A large slope and bias were
observed for the slave predictions using FIR transformation.
The bias was grossly dissimilar between the VAL2 and VAL3
predictions. The applied bias correction was recalculated
for FIR and GLS, since those algorithms involve recalcu-
lation of the calibration. In both cases, the bias correction
was calculated using the same, independent, sample set.2

GLS preserved more spectral variation than FIR (Figure 12),
but the shape of the spectrum was significantly modified.
Only MSC preprocessing was applied for recalculation of
the calibration model after GLS weighting; Savitsky-Golay
first derivative was no longer beneficial. As was observed
with FIR, calibration performance was reduced somewhat
after GLS weighting. The optimal GLS weighting factor, a,
was found to be 0.003, which is a very large adjustment.
This is likely a result of the significant baseline difference
between the master and slave instrument. The RMSET
for the GLS calibration was significantly better than was

Figure 12. Calibration transfer (slave) training spectra after
application of data transformation algorithms (FIR = red, GLS =
blue, PDS = black). The spectra were centered and scaled using
standard normal variate (SNV) transformation to facilitate
presentation.

AAPS PharmSciTech 2005; 6 (2) Article 39 (http://www.aapspharmscitech.org).

E293



observed after FIR filtering. While the VAL3 prediction
error for the master instrument would decrease to 3.20 mg
after GLS weighting, VAL2 prediction error would increase
to 1.44 mg. Though a bias (and slope) difference was ob-
served, it was constant for both the VAL2 and VAL3 sam-
ples, suggesting a common bias correction for VAL2 and
VAL3. If both the slope and bias were corrected, transfer
prediction error (using GLS) could be reduced to 1.33 and
2.91 mg for VAL2 and VAL3, respectively. Furthermore,
while bias adjustment can be performed confidently with
relatively few samples, slope adjustment of predicted values
should be approached with more caution. This, along with
the need to constantly recalculate the calibration for every
transfer situation, makes GLS weighting a rather complex
technique for calibration transfer.

Among FIR, GLS, and PDS, PDS was found to perform
the best when applied to production-scale sample spectra
(VAL2). As mentioned earlier, PDS has a distinct advant-
age over the other methods in that it does not involve modi-
fication of the calibration or master instrument data, which
simplifies the calibration transfer process. When applied to
more diverse, laboratory-scale sample spectra, a slope and
bias were observed between the master and slave predic-
tions. Since the calibration transfer training spectra were
drawn from production-scale tablets, there was rotational
ambiguity in the slope estimation due to insufficient covari-
ance between the master and slave responses.

Significant bias is observed when comparing raw absorb-
ance intensity for the master and slave instruments at a single
wavelength (Figure 13). However, the difference in slope is
small. Recognizing the variability in intensity, and lack
thereof in slope, a fourth method of calibration transfer was
attempted by simply subtracting the mean spectral differ-
ence between the master and slave instruments (Tables 1
and 2). This “baseline subtraction” method22 was observed
to perform better than the other methods (Figure 14).

Monte Carlo simulation was used to determine how many
calibration transfer samples would be required for success-
ful implementation of the baseline transfer method. During
the simulation, varying numbers of training spectra were
drawn randomly from the calibration transfer training
data set, baseline subtraction was calculated, and the
VAL2 prediction error was calculated. As seen in Figure 15,
satisfactory calibration transfer is achieved with as few as
15 calibration transfer training samples. Since only additive
spectral differences are corrected, production-scale sample
spectra are suitable for calibration transfer using baseline
subtraction.

The stability sample set calibration monitoring statistics
and API content predictions plotted against time of analysis
are shown in Figure 16. There is no apparent trend in pre-
dicted API content, NFL, wavelength accuracy, or Hotel-
ling’s T2, but there is a trend of increasing Q residuals with
time. Thus, the changes taking place in the samples are in a

Table 1. Calibration Transfer Test Results for the VAL2 Samples*

VAL2 Master FIR GLS PDS Baseline Subtraction

Algorithm parameter NA 23 0.003 1 NA
RMSET (mg) NA 4.03 0.98 0.90 1.20
RMSEP (mg)† 1.04 2.93 2.97 1.33 1.22
RMSEP (%, nominal)† 2.08 5.86 5.94 2.65 2.43
Bias (mg)† 0.71 −2.82 −2.52 1.06 0.30

*FIR indicates finite impulse response filtering; GLS, generalized least squares; PDS, piecewise direct standardization; NA, not applicable; RMSET,
root mean square error of transfer; and RMSEP, root mean square error of prediction.
†Predictions have been corrected for bias using an independent sample set.

Table 2. Calibration Transfer Test Results for the VAL3 Samples*

VAL3 Master FIR GLS PDS Baseline Subtraction

Algorithm parameter NA 23 0.003 1 NA
RMSET (mg) NA 3.77 2.14 4.08 3.25
RMSEP (mg)† 3.76 7.23 4.6 5.82 3.99
RMSEP (%, nominal)† 7.52 14.46 9.2 11.64 7.98
r2 0.948 0.979 0.955 0.96 0.927
Bias (mg)† 2.04 1.71 −2.41 2.25 −0.84
Slope 1.04 1.98 0.84 1.52 1.08

*FIR indicates finite impulse response filtering; GLS, generalized least squares; PDS, piecewise direct standardization; NA, not applicable; RMSET,
root mean square error of transfer; and RMSEP, root mean square error of prediction.
†Predictions were corrected for bias using an independent sample set.
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direction orthogonal to the API content prediction model.
Depending on what is to be measured, other calibrations
might be affected by such changes in tablet quality.

Because the stability test was performed in an uncontrolled
environment, and the samples were frequently removed from
their sealed containers, it was surmised that the spectral
changes were the result of repeated exposure to ambient
conditions and handling. The stability test conditions can be
considered as extremely adverse. In a more realistic scenario,
the rescue samples will be periodically updated and stored
under controlled conditions. As shown in Figure 16, except

for a single day, calibration transfer using the 9-sample
stability set was successful, with VAL2 prediction error
below 1.5 mg.

Baseline subtraction calibration transfer was performed
to mitigate the spectral effect of lamp change as an ex-
ample of the use of a calibration transfer rescue set. A
set of 16 production-scale tablets were scanned (using the
master instrument) 10 times each, with replacement, before
and after changing the lamp. Half of the tablets were used
for estimation of the baseline subtraction spectrum, and
half were used as a test set. A very small, yet complex,
difference was observed between the spectra before and

Figure 13. Comparison of NIR absorbance at 1600 nm for the
master and slave spectrometers. While little difference in slope
is observed, a bias difference is present.

Figure 14. Prediction plot for VAL2 (red dots) and VAL3 (blue
circles) slave spectra after calibration transfer using baseline
subtraction. Predicted values have been corrected for bias.

Figure 15. Results of simulated calibration transfer using
baseline subtraction with a variable number of calibration
transfer samples. Since variation in RMSEP is not greatly
reduced after 15 samples, there is little benefit to using a larger
calibration transfer data set.

Figure 16. Continuous calibration monitoring scores (A-D), API
predictions (E), and RMSEP following calibration transfer (F) for
the stability sample spectra as a function of time.
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after the lamp change (Figure 17), leading to a −0.32-mg
prediction bias error. After applying the baseline subtrac-
tion vector to the test spectra, the prediction bias was
reduced to less than 0.05 mg. While the −0.32 mg bias is
small enough to be corrected with a simple prediction bias
adjustment, long-term instrument maintenance with peri-
odic baseline adjustment may increase the value of spec-
tral databases by reducing a known source of extraneous
spectral variation. For this instrument, it is surmised that
baseline shape variation is related to polarization depend-
ency of the AOTF crystal, or light source positioning
effects.

CONCLUSION

The objectives of this work were the following:

1. Develop a system for continuous calibration mon-
itoring.

2. Formulate an appropriate strategy for calibration data
transformation to support instrument maintenance
and calibration transfer between instruments.

3. Determine the required number, and allowable storage
time, of instrument standardization “rescue” samples.

With these objectives in mind, the experimental results
presented for these data demonstrate the following:

1. Key instrument performance parameters can be con-
tinuously monitored by analyzing features of sample
spectra.

2. Hotelling’s T2 and spectral Q residuals provide an
effective basis for detecting in- and out-of-model
spectral deviations.

3. Calibration transfer among multiple instruments can
be accomplished with baseline subtraction, and as
few as 15 transfer samples for this system.

4. For this application, calibration transfer samples can
be stored for at least 1 month without compromising
calibration transfer performance.

5. Long-term spectral database uniformity can be main-
tained using appropriate calibration transfer techniques.

Calibration monitoring provides a means for assessing in-
strument performance and calibration suitability simulta-
neously, in real-time. The combination of techniques (NFL,
wavelength uncertainty, Hotelling’s T2, and Q residual),
which are performed for every spectrum, constantly affirm
measurement validity.

It is important to note that, while multiple calibration trans-
fer algorithms were compared, the experimental results pres-
ented here are specific to this system, and may not reflect
general applicability. Rather, the studies performed for this
application should be repeated independently for any
subsequent analytical application where a calibration must
be monitored, maintained, or transferred.

In this, and in prior articles in this series,1,2 the develop-
ment of an online pharmaceutical tablet analysis system
using NIR spectroscopy has been illustrated. The deploy-
ment and operation of the method will provide opportunities
in the future to demonstrate full-scale, real-time calibration
monitoring, calibration update, and parallel testing.
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